Automatic Classification of Melanoma Skin Cancer with Deep Convolutional Neural Networks
نویسندگان
چکیده
Melanoma skin cancer is one of the most dangerous types cancer, which, if not diagnosed early, may lead to death. Therefore, an accurate diagnosis needed detect melanoma. Traditionally, a dermatologist utilizes microscope inspect and then provide report on biopsy for diagnosis; however, this process easy requires experience. Hence, there need facilitate while still yielding diagnosis. For purpose, artificial intelligence techniques can assist in carrying out In study, we considered detection melanoma through deep learning based cutaneous image processing. tested several convolutional neural network (CNN) architectures, including DenseNet201, MobileNetV2, ResNet50V2, ResNet152V2, Xception, VGG16, VGG19, GoogleNet, evaluated associated models graphical processing units (GPUs). A dataset consisting 7146 images was processed using these models, compared obtained results. The experimental results showed that GoogleNet obtain highest performance accuracy both training test sets (74.91% 76.08%, respectively).
منابع مشابه
Non-melanoma skin cancer diagnosis with a convolutional neural network
Background: The most common types of non-melanoma skin cancer are basal cell carcinoma (BCC), and squamous cell carcinoma (SCC). AKIEC -Actinic keratoses (Solar keratoses) and intraepithelial carcinoma (Bowen’s disease)- are common non-invasive precursors of SCC, which may progress to invasive SCC, if left untreated. Due to the importance of early detection in cancer treatment, this study aimed...
متن کاملImageNet Classification with Deep Convolutional Neural Networks
The intended goal of the experiments was to create a deep, convolutional network that uses supervised learning to achieve better (lower) error rates than the rates previously observed, to identify images, on a highly challenging dataset. The parameters used for judging if the CNN is able to recognise the object is given by “Top-1” and “Top-5” predictions made – that is the top prediction made, ...
متن کاملScene Classification with Deep Convolutional Neural Networks
The use of massive datasets like ImageNet and the revival of Convolutional Neural Networks (CNNs) for learning deep features has significantly improved the performance of object recognition. However, performance at scene classification has not achieved the same level of success since there is still semantic gap between the deep features and the high-level context. In this project we proposed a ...
متن کاملSkin Lesion Classification Using Deep Multi-scale Convolutional Neural Networks
Melanoma is a malignant tumour originating from melanocytes cells skin cells responsible for the production of melanin. The American Cancer Society estimates that in the United States alone for 2017, more than 87,000 new melanoma cases will be diagnosed and around 9,300 persons are expected to die[1]. Skin melanoma lesions are very challenging to visually diagnose due to their similarity in vis...
متن کاملAutomatic Tagging Using Deep Convolutional Neural Networks
We present a content-based automatic music tagging algorithm using fully convolutional neural networks (FCNs). We evaluate different architectures consisting of 2D convolutional layers and subsampling layers only. In the experiments, we measure the AUC-ROC scores of the architectures with different complexities and input types using the MagnaTagATune dataset, where a 4-layer architecture shows ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: AI
سال: 2022
ISSN: ['2673-2688']
DOI: https://doi.org/10.3390/ai3020029